Cartan maps, clean rings, and unique factorization

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique Factorization in Generalized Power Series Rings

Let K be a field of characteristic zero and let K((R≤0)) denote the ring of generalized power series (i.e., formal sums with well-ordered support) with coefficients in K, and non-positive real exponents. Berarducci (2000) constructed an irreducible omnific integer, in the sense of Conway (2001), by first proving that an element of K((R≤0)) that is not divisible by a monomial and whose support h...

متن کامل

Unique Factorization in Regular Local Rings.

In this note we prove that every regular local ring of dimension 3 is a unique factorization domain. Nagata4 showed (Proposition 11) that if every regular local ring of dimension 3 is a unique factorization domain, then every regular local ring has unique factorization.* Thus, combining these results we have that every regular local ring is a unique factorization domain. Throughout this note R ...

متن کامل

Unique Factorization in Invariant Power Series Rings

Let G be a finite group, k a perfect field, and V a finite dimensional kG-module. We let G act on the power series k[[V ]] by linear substitutions and address the question of when the invariant power series k[[V ]] form a unique factorization domain. We prove that for a permutation module for a p-group in characteristic p, the answer is always positive. On the other hand, if G is a cyclic group...

متن کامل

Generalized f-clean rings

In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.

متن کامل

Strongly nil-clean corner rings

We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings‎, ‎then $R/J(R)$ is nil-clean‎. ‎In particular‎, ‎under certain additional circumstances‎, ‎$R$ is also nil-clean‎. ‎These results somewhat improves on achievements due to Diesl in J‎. ‎Algebra (2013) and to Koc{s}an-Wang-Zhou in J‎. ‎Pure Appl‎. ‎Algebra (2016)‎. ‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1981

ISSN: 0021-8693

DOI: 10.1016/0021-8693(81)90246-5